Oxidation behaviour of MCrAlX coatings: effect of surface treatment and an Al-activity based life criterion
نویسندگان
چکیده
MCrAlY coatings (M=Ni and/or Co) have been widely used for the protection of superalloy components against oxidation and hot corrosion in the hot sections of gas turbines. The drive to improve engine combustion efficiency while reducing emissions by increasing the operation temperature brings a big challenge for coating design. As a result, the need for improvement of MCrAlY coatings for better oxidation resistance is essential. Formation of a stable, dense, continuous, and slow-growing α-Al2O3 layer, on the MCrAlY coating surface, is the key to oxidation protection, since the protective α-Al2O3 scale offers superior oxidation resistance due to its lower oxygen-diffusion rate as compared with other oxides. The ability of a MCrAlY coating to form and maintain such a protective scale depends on the coating composition and microstructure, and can be improved through optimization of deposition parameters, modification of coating surface conditions, and so on. Part of this thesis work focuses on studying the effect of post-deposition surface treatments on the oxidation behavior of MCrAlX coatings (X can be yttrium and/or other minor alloying elements). The aim is to gain fundamental understanding of alumina scale evolution during oxidation which is important for achieving improved oxidation resistance of MCrAlX coatings. Oxide scale formed on coatings at initial oxidation stage and the effect of surface treatment were investigated by a multi-approach study combining photo-stimulated luminescence, microstructural observation and weight gain. Results showed that both mechanically polished and shot-peened coatings exhib-
منابع مشابه
Modeling of the microstructural evolution and lifetime prediction of MCrAlX coatings on Nickel based superalloys in high temperature oxidation
MCrAlY coatings are deposited onto superalloys to provide oxidation and corrosion protection at high temperature by the formation of a thermally grown oxide scale. In this project, the oxidation behaviour of a HVOF CoNiCrAlYSi coating on IN792 was studied for both isothermal oxidation (900, 1000 and 1100 °C) and thermal cycling (100-1100 °C). The microstructural evolution of the CoNiCrAlYSi coa...
متن کاملInvestigation of the effect of electrolyte on acoustical behaviour of ceramic coatings produced by method Plasma Electrolytic Oxidation (PEO) on titanium
In this paper, titanium oxide coating (TiO2) was produced on titanium alloy Ti6Al4V by Plasma Electrolytic Oxidation (PEO) Method. Sodium Silicate (Na2SiO3) and Sodium Aluminate (NaAlO2) based electrolytes were selected in PEO process. The effects of concentration of Sodium Aluminate (0, 2.5, 5, 7.5, and 10 g/L) on the microstructure and acoustical behaviour of the formed coatings were studied....
متن کاملThe Study of High Temperature Oxidation behavior of Different Microstructures of HVOF Thermally Sprayed Coatings
Improvement of thermally sprayed coating properties by microstructure modification has been considered as a significant solution. Therefore, in this research the effect of dissolved oxygen content and post heat treatment on the formation and distribution of secondary phase particles, particularly in nano-scale in the coatings during spraying and after that were studied. Ni-5 wt% Al powders were...
متن کاملNickel Base Superalloy Rene®80 – The Effect of High Temperature Cyclic Oxidation on Platinum-Aluminide Coating Features
Nickel base superalloy alloys are used in the manufacture of gas turbine engine components, which in use are exposed to high temperatures and corrosive environments. The platinum aluminide coatings described here have been developed to protect nickel base superalloy alloys from oxidation. In this study, the effect of cyclic oxidation, platinum layer thickness and aluminizing process on beha...
متن کاملTribological Behaviour of Fe-Al Intermetallic Compound Coated Carbon Tool Steel
The use of Fe-Al intermetallic compound coatings has been investigated in order to improve the tribological behaviour of carbon tool steel. The coatings were formed by a pack cementation process and subsequently diffusion annealing at 900˚C in an argon controlled atmosphere. The optimum diffusion time was selected on the basis of optimum thickness and tribological behaviour.
The microstructu...
متن کامل